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Stochastic Manhattan learning: Time-evolution operator for the ensemble dynamics

Todd K. Leen* and John E. Moody†

Department of Computer Science and Engineering, Oregon Graduate Institute of Science and Technology,
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~Received 6 January 1997!

Typical theoretical descriptions of the ensemble dynamics of stochastic learning algorithms rely on a trun-
cated expansion to approximate the time-evolution operator appearing in the master equation. In this paper we
give an exact expression for the time-evolution operator for Manhattan learning, a variant of stochastic
gradient-descent learning in which the weights are updated in proportion to thesign of the cost function
gradient. This closed form for the time evolution captures the full nonlinearity of the problem without approxi-
mation, allowing exact study of the ensemble dynamics.@S1063-651X~97!07207-3#

PACS number~s!: 87.10.1e, 02.50.2r, 05.40.1j, 07.95.Mh
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ENSEMBLE DYNAMICS OF STOCHASTIC LEARNING

Stochastic learning algorithms provide recursively refin
estimates of optimal model parameters in machine learn
neural networks, adaptive signal processing, and con
Most algorithms are of the form

w~n11!5w~n!1m~n!H„w~n!,x~n!…, ~1!

wherew(n)PRN ~with components denotedwi) is the pa-
rameter estimate at thenth iteration of the recursion,m(n) is
called the learning rate,H embodies the learning rule, an
x(n)PRM is the datum input to the algorithm at thenth
iteration. In supervised learning~e.g., regression or classifi
cation!, this datum is an input-target pair$j(n),t(n)%. In
unsupervised learning~e.g., clustering!, there is no target
The sequence of inputs$x(1),x(2), . . .% results from sam-
pling from an empirical distribution of training data. In mo
theoretical treatments, and as considered here, this sam
is independent and identically distributed. Through an ini
choicew(0) and recursive application of Eq.~1!, the se-
quence of inputs generates a sequence of parameter esti
$w(0),w(1), . . .%. This sequence of parameter estimates
a Markov chain whose probability law is specified by t
master equation

P~w,n11!2P~w,n!5E dw8@P~w8,n!W~wuw8!

2P~w,n!W~w8uw!#, ~2!

whereW(wuw8) is the single time-step transition probabili

W~wuw8!5^d„w2w82mH~w8,x!…&x ~3!

and ^ &x indicates the ensemble average with respect tox.
The usual theoretical approach to Eq.~2! involves ap-

proximating the integrals in the time-evolution operator. E
panding the transition probability~3! as a power series in
m leaves the Kramers-Moyal expansion@1,2#. In a region
close to the optimal parameters@zeros of ^H(w,x)&x with
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negative definite Jacobian^DH(w,x)&x# and for small learn-
ing rate, the dynamics induced by the Kramers-Moyal exp
sion can be described by the diffusion approximation to
small noise expansion@1#.

Global phenomena, e.g., transitions between basins of
ferent optimal parameter values, have been treated with s
success@3–5#. However, for appreciable learning rates, t
theory is encumbered by the contribution of jump mome
beyond the drift and diffusion coefficients. The lack of
solvable model has left theoretical expositions reliant
tirely on low-order expansions.

We give an example of an algorithm of practical intere
for which the integrals in the master equation can be sol
in closed form.~Equivalently, the Kramers-Moyal expansio
can be summed exactly.! This obviates the need for approx
mating truncations, allowing an exact treatment of the d
namics.

MANHATTAN LEARNING

Many supervised and unsupervised learning algorith
are cast as function minimization tasks. One writes a c
functionE(w)5^E(x,w)&x that is a functional of the param
etrized map being learnedf (x;w) and the distribution of data
x. Learning corresponds to adjusting the parametersw so as
to minimizeE(w).

Commonly, the learning algorithm is derived as a gradi
descent onE(w). In on-line or stochastic learning, one pe
forms gradient descent on theinstantaneouscost E(w,x)
rather than on the average cost. The corresponding lear
equations are Eq.~1! with

H~w,x!52¹wE~w,x!. ~4!

Such algorithms are known as stochastic gradient des
algorithms. They are a specific instance of stochastic
proximation procedures. Unlike batch gradient desce
which uses the gradient of the average costE(w)
5^E(w,x)&x , the stochastic algorithm uses a noisy estim
of the gradient. The noise can help avoid trapping in po
local optimum for nonlinear optimization problems. The st
chastic algorithms also offer a speed advantage for la
redundant datasets. Since parameter updates are based
single datum, the stochastic algorithm avoids computing
average overx required for the batch algorithm.
1262 © 1997 The American Physical Society
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56 1263BRIEF REPORTS
Gradient descent algorithms suffer from a number of d
ficulties: Convergence is terribly slow when the conditi
number of the Hessian ofE(w) is large and progress alon
the cost surface is slow where the gradients are small.
alleviate the latter, several researchers~see@6,7# and refer-
ences therein! have suggested Manhattan learning, where
weights are updated in proportion to thesignof the compo-
nents of the gradient

Hi~w,x!52sgnF]E~w,x!

]wi
G . ~5!

Peterson and Hartman@7# found Manhattan learning to b
beneficial, presuming that its advantage lies in the fact
its weight changes are fixed and bounded. Manhattan le
ing prevents the stallout observed in gradient descent w
the cost function has nearly flat plateaus.

EVOLUTION OF THE PROBABILITY DENSITY

With parameter updates based on the sign of the grad
components,Hi(w,x) is limited to 0,61 and is piecewise
constant onx. Consequently, the averages required to cal
late the transition probability~3! can be completed in close
form. For clarity of exposition, we first derive the mast
equation for a one-dimensional parameter spacewPR1 and
then give the results for the multidimensional case.

To begin, we partition the data space into three disjo
regions

S1~w!5$xuH~w,x!511%,

S0~w!5$xuH~w,x!50%,

S2~w!5$xuH~w,x!521%. ~6!

In terms of this partition, the average in the single time-s
transition probability~3! becomes

W~wuw8!5^d~w2w82m!&S1~w8!1^d~w2w8!&S0~w8!

1^d~w2w81m!&S2~w8!

[F1~w8!d~w2w82m!1F0~w8!d~w2w8!

1F2~w8!d~w2w81m!, ~7!

whereF1 , F0, and F2 are the measure ofx on the sets
S1 , S0, andS2 , respectively. Finally, the measuresF1 ,
F0 , andF2 can be rewritten in terms of the first two jum
moments~normalized by the step sizem)

D ~1!~w!5^H~w,x!&x5F1~w!2F2~w!,

D ~2!~w!5^H2~w,x!&x5F1~w!1F2~w!. ~8!

Solving Eqs.~8! for the F ’s in terms of the jump moment
and substituting the resulting transition probabilities~7! into
the master equation~2! leaves our closed form for the evo
lution of the probability density

P~w,n11!2P~w,n!

52
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1

2
@D ~2!~w1m!P~w1m,n!22D ~2!~w!P~w,n!

1D ~2!~w2m!P~w2m,n!#. ~9!

Equation~9! is an exact expression for the time evolution
the probability densityP(w,n) that involves only the first
two jump moments~8!. The higher-order jump moments ar
explicitly absent because they are all trivially related to t
first two. The first jump momentD (1)(w) is just the average
of the update function and is the same update used in
batch version of the algorithm. The second mome
D (2)(w) is zero at thosew for which the update function is
zero for every possible pattern x, i.e., it is zero for weights
that perfectly solve the problem. At all other weights, t
second jump moment lies in the range 0,D (2)(w)<1.

Curiously, the right-hand side of Eq.~9! is just a finite-
difference approximation to the Fokker-Planck equation o
grid with spacing equal to the stepsizem. This is reasonable
since the learning rule restricts parameter changes to6m.
However, we stress that Eq.~9! describes thecompletedy-
namics and in no way represents a diffusion approximat
to the master equation.

Several features of the dynamics are illuminated by
spection of Eq.~1! with Eq. ~5! and the ensemble behavio
~9!. First, if the ensemble is initialized such thatP(w,0) has
support only on the gridw56 im, i50,1, . . . , then
P(w,n) will have support on this grid for alln. The dynam-
ics are then easily developed by matrix multiplication. T
evolution matrix is sparse since Eq.~9! involves only
nearest-neighbor interactions on the grid. Indeed, for a o
dimensional parameter space, the evolution matrix is tr
agonal. With these simple dynamics, equilibria can be ca
lated by finding the null space of a matrix and first-passa
time calculations reduce to the solution of a linear system

Our second observation concerns absorbing states.
some problems, e.g., supervised learning problems w
zero-error solutions, there exist parameter vectorsw

*
[ i ] ,

i51, . . .q, such that¹E(w
*
[ i ] ,x)50 ;x. Then the master

equation has equilibria consisting ofd functions at thew* ,

P0~w!5(
i51

q

aid~w2w
*
[ i ] !,

whereq is the number of distinct absorbing states. Theai are
dependent on the initial distributionP(w,0). For learning
driven by the sign of the gradient, these solutions are o
accessible if the initial distributionP(w,0) is restricted to
points such thatw2w* i are integer multiples ofm, that is,
all the initial density and all of thew* must lie on a grid of
size m. If this is not the case, then at late timesP(w,n)
contains peaks that execute oscillations about these abs
ing states.

A type of oscillatory behavior can also occur when
occupied state has unoccupied nearest neighbors,
example, if the initial density is confined to asingle grid
point. Supposew0, not an absorbing state, is occupied
timen and the adjacent statesw06m are unoccupied, that is
P(w0 ,n)Þ0 butP(w06m,n)50. Then by Eq.~9!

P~w0 ,n11!5P~w0 ,n!@12D ~2!~w0!#.
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FIG. 1. Cost functionE(w) ~curve! overlaid withP(w,n) ~histogram! on a grid withm50.05. There is an absorbing state atw50 and
a local minimum atw51. The ensemble is initialized in the local minimum~top left frame! and the evolution ofP(w,n) is portrayed at 50,
51, 500, 501, and 5000 iterations.
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By assumption,w0 is not an absorbing state, soH
2(w0 ,x) is

nonzero for some of the inputsx. Hence by Eqs.~5! and~8!,
0,D (2)(w0)<1. WhenD (2)(w0),1, some of the density
transitions to the statesw06m at n11. In general, some o
this density will transition back tow0 at n12. When
H2(w0 ,x) is nonzero for all of the inputs x, then
D (2)(w0)51 and all of the density leavesw0 at timen11.
When this condition is met over a set of adjacent states,
density switches between even- and odd-numbered
points on successive iterations.~See the example in Fig. 1.!

Figure 1 depicts the evolution ofP(w,n) overlaid on the
cost function for a problem with a global minimum at th
origin and a local minimum atw51.0. The global minimum
is an absorbing state. The grid, of spacingm50.05, contains
both the local and global minima. The ensemble is initializ
with all the density at the local minimum. The oscillato
behavior is evident by comparing framesn550 with n551
andn5500 withn5501.

In most problems, absorbing states are not present.
obtain convergence~in mean square or with probability one!
one employs learning rate annealing in which the step
m(n) is decayed according to some fixed schedule@8# or
using an adaptive scheme to obtain more rapid converge
@9#. In Manhattan learning, annealing corresponds to shr
ing the grid size.

MULTIDIMENSIONAL CASE

For the one-dimensional algorithm, we were able to
press the averages in the transition probability~3! in a finite
number of terms because the update functionH(w,x) is
piecewise constant inx. This holds for the multidimensiona
case as well, and stands in sharp contrast to stochastic
dient descent where the averages lead to the infi
Kramers-Moyal expansion.

For the multidimensional case, we consider two forms
stochastic Manhattan learning. In the first form, at each
eration a single weightis chosen at random and only th
chosen weight is updated. In this case, like the o
dimensional algorithm, the evolution is expressed in terms
the first two jump moments. In the second form of the alg
rithm, all weights are updated at each iteration. Here
evolution cannot be expressed in terms of the first two ju
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moments. Nevertheless the averages are computed in a
number of terms.

SINGLE WEIGHT UPDATE

Let wPRN with componentswj . At each learning itera-
tion, we choose one inputx and one componentwj to incre-
ment in proportion to the sign of the corresponding gradi
component. We explicate the random choice of compon
by introducing indicator variablesj jP$0,1% equal to 1 with
probability 1/N. ~Only a singlej j is nonzero at each itera
tion.! Then

Hj~w,x,j!52jj sgnF]E~w,x!

]wj
G . ~10!

The transition probability~3! now contains an averag
over the indicator variables, explicitly,

W~wuw8!5(
j

P~j!^d„w2w82mH~w8,x,j!…&x

5(
j

P~j!K )
i51

N

dSwi2wi8

1mj i sgn
]E~w8,x!

]wi
D L

x

5
1

N (
i51

N S)
jÞ i

d~wj2wj8! D
3 K dSwi2wi81m sgn

]E~w8,x!

]wi
D L

x

5
1

N (
i51

N S)
jÞ i

d~wj2wj8! D @Fi1~w8!

3d~wi2wi82m!

1Fi0~w8!d~wi2wi8!

1Fi2~w8!d~wi2wi81m!#, ~11!

where theF are defined in obvious analogy to those in E
~7!.
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Substituting the transition probability~11! into the master
equation, one obtains an expression for the evolution of
density in terms of theF. As in the one-dimensional case, th
latter can be written in terms of the first two jump momen

Dj
~1!~w!5N^j jH j~w,x!&x,j

5^Hj~w,x!&x5Fi1~w!2Fi2~w!,

Djk
~2!~w!5N^j jjkH jHk&x,j5d jk^Hj

2~w,x!&x

5@Fi1~w!1Fi2~w!#d jk . ~12!

Using these expressions and the fact thatFi21Fi0
1Fi151, the evolution of the density can be written as

P~w,n11!2P~w,n!

52
1

2N(
j51

N

@Dj
~1!~w1m j !P~w1m j ,n!

2Dj
~1!~w2m j !P~w2m j ,n!#

1
1

2N(
j51

N

@Dj j
~2!~w1m j !P~w1m j ,n!

22Dj j
~2!~w!P~w,n!1Dj j

~2!~w2m j !P~w2m j ,n!#,

~13!

wherem j is an increment of lengthm alongwj . As in the
one-dimensional case, this is of the form of a finit
difference approximation to a Fokker-Planck equation,
carries the full dynamics implicit in the original master equ
tion.

UPDATING ALL WEIGHTS

In this case, all the indicator variablesj i are equal to one
at every iteration. The transition probability becomes

W~wuw8!5K )
i51

N

dSwi2wi81m sgn
]E~w8,x!

]wi
D L

x

. ~14!

It is convenient to define the quantity

g i[2Hi~w8,x![sgn
]E~w8,x!

]w
.

.

e

-
t
-

Since each component ofg has three possible value
0,61, there are 3N possible vectorsg. Next defineFg(w8)
to be the measure ofx corresponding to the specific vecto
g when the system is in statew8. With these definitions, the
transition probability is

W~wuw8!5(
g

Fg~w8!)
i51

N

d~wi2wi81mg i ! ~15!

and the density evolves according to

P~w,n11!5E dw8W~wuw8!P~w8,n!

5(
g

Fg~w1mg!P~w1mg,n!. ~16!

In general, the evolution in Eq.~16! cannot be rewritten in
terms of the first two jump moments. However, unlike t
Kramers-Moyal expansion, only a finite number (3N) of
terms are required, though the computation rapidly becom
cumbersome for largeN. ~TheF can be written in terms of
the jump moments, but will involve higher-order momen
For example, forwPR2, there are nine distinctF. It is
straightforward to verify that these can be rewritten in ter
of the jump momentsD1

(1) , D2
(1) , D11

(2) , D22
(2) , D12

(2) , D112
(3) ,

D122
(3) , andD1122

(4) .!

SUMMARY

Stochastic learning algorithms are ubiquitous in the m
chine learning literature, with stochastic gradient-desc
methods the most commonly used in practice. Previous
oretical treatments of the ensemble weight space dynam
based on the master equation have relied entirely on l
order approximations, usually diffusion equations. If t
usual gradient descent is modified so that parameter upd
are based on thesignof the gradient, then the dynamics ca
be developed without approximation.

For Manhattan learning, we are able to write the dynam
of the density without approximation because the avera
appearing in the single step transition probability~3! can be
evaluated in closed form. This is possible because the up
functionH(w,x) is piecewise constant onx. This condition
restricts the class of algorithms for which one will be able
evaluate the ensemble dynamics without approximation.
ys.
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