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Stochastic Manhattan learning: Time-evolution operator for the ensemble dynamics
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Typical theoretical descriptions of the ensemble dynamics of stochastic learning algorithms rely on a trun-
cated expansion to approximate the time-evolution operator appearing in the master equation. In this paper we
give an exact expression for the time-evolution operator for Manhattan learning, a variant of stochastic
gradient-descent learning in which the weights are updated in proportion teighef the cost function
gradient. This closed form for the time evolution captures the full nonlinearity of the problem without approxi-
mation, allowing exact study of the ensemble dynan{i§4063-651X97)07207-3

PACS numbg(s): 87.10+e, 02.50-r, 05.40:+j, 07.95.Mh

ENSEMBLE DYNAMICS OF STOCHASTIC LEARNING negative definite JacobigH(w,x)),] and for small learn-
ing rate, the dynamics induced by the Kramers-Moyal expan-
Stochastic learning algorithms provide recursively refinedsion can be described by the diffusion approximation to a
estimates of optimal model parameters in machine learninggmall noise expansiofti].
neural networks, adaptive signal processing, and control. Global phenomena, e.g., transitions between basins of dif-

Most algorithms are of the form ferent optimal parameter values, have been treated with some
succesg3-5]. However, for appreciable learning rates, the
w(n+1)=w(n)+ u(n)H(W(n),x(n)), (1) theory is encumbered by the contribution of jump moments

_ ) beyond the drift and diffusion coefficients. The lack of a
wherew(n) e " (with components denoted;) is the pa-  solvable model has left theoretical expositions reliant en-
rameter estimate at theh iteration of the recursionu(n) is tirely on low-order expansions.
called the learning ratei embodies the learning rule, and e give an example of an algorithm of practical interest
x(n) e RM is the datum input to the algorithm at theh  for which the integrals in the master equation can be solved
iteration. In supervised learnin@.g., regression or classifi- in closed form (Equivalently, the Kramers-Moyal expansion
cation, this datum is an input-target paf¢(n).,t(n)}. In  can be summed exactyThis obviates the need for approxi-

unsupervised learninge.g., clustering there is no target. mating truncations, allowing an exact treatment of the dy-
The sequence of inpufx(1),x(2), ...} results from sam- npamics.

pling from an empirical distribution of training data. In most

theoretical treatments, and as considered here, this sampling MANHATTAN LEARNING
is independent and identically distributed. Through an initial _ _ . _
choice w(0) and recursive application of Eql), the se- Many supervised and unsupervised learning algorithms

guence of inputs generates a sequence of parameter estima@é cast as function minimization tasks. One writes a cost
{w(0),w(1), ...}. This sequence of parameter estimates igunction E(w) =(E(x,w)) that is a functional of the param-

a Markov chain whose probability law is specified by theetrized map being learndidx;w) and the distribution of data
master equation X. Learning corresponds to adjusting the parametes® as

to minimize E(w).

Commonly, the learning algorithm is derived as a gradient
descent orE(w). In on-line or stochastic learning, one per-
forms gradient descent on thiestantaneouscost E(w,Xx)
—P(w,mW(w’|w)], (2)  rather than on the average cost. The corresponding learning
equations are Eql1) with

P(w,n+1)—P(w,n)= J dw'[P(w',n)W(w|w")

whereW(w|w’) is the single time-step transition probability
H(w,x)=—V,E(w,X). 4
W(w|w')=(sw—w'—uH(W’,x)))y (3)
Such algorithms are known as stochastic gradient descent
and( ), indicates the ensemble average with respect.to  algorithms. They are a specific instance of stochastic ap-
The usual theoretical approach to E®) involves ap- proximation procedures. Unlike batch gradient descent,
proximating the integrals in the time-evolution operator. Ex-which uses the gradient of the average cds(w)
panding the transition probabiliti8) as a power series in  =(E(w,X)),, the stochastic algorithm uses a noisy estimate
u leaves the Kramers-Moyal expansiph,2]. In a region of the gradient. The noise can help avoid trapping in poor
close to the optimal parametefseros of(H(w,x)), with  local optimum for nonlinear optimization problems. The sto-
chastic algorithms also offer a speed advantage for large,
redundant datasets. Since parameter updates are based on a
*Electronic address: tleen@cse.ogi. edu single datum, the stochastic algorithm avoids computing the
"Electronic address: moody@cse.ogi.edu average ovek required for the batch algorithm.
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Gradient descent algorithms suffer from a number of dif- ~DD(wW—p)P(W—p,n)]

ficulties: Convergence is terribly slow when the condition

number of the Hessian @&(w) is large and progress along

the cost surface is slow where the gradients are small. To

alleviate the latter, several research&sse[6,7] and refer-

1
+ E[D<2>(w+ w)P(W+ u,n)—2D@(w)P(w,n)

ences therejnhave suggested Manhattan learning, where the +D P (w—p)P(w=p,n)]. ©)
weights are updated in proportion to thigin of the compo-  Equation(9) is an exact expression for the time evolution of
nents of the gradient the probability densityP(w,n) that involves only the first
IE(W,X) two jump momentg8). The higher-order jump moments are
Hi(w,x)= —sgr{—’ . (5) explicitly absent because they are all trivially related to the
W first two. The first jump momer")(w) is just the average

. of the update function and is the same update used in the
Peterson and Hartmdid] found Manhattan learning to be batch version of the algorithm. The second moment

beneficial, presuming that its advantage lies in the fact thab(z)(w) is zero at thosev for which the update function is
its weight changes are fixed and bounded. Manhattan learmy o for every possible pattern,s.e., it is zero for weights
ing prevents the stallout observed in gradient descent whekg 4t perfectly solve the problem. At all other weights, the

the cost function has nearly flat plateaus. second jump moment lies in the range:D@(w)<1.
Curiously, the right-hand side of EQ) is just a finite-
EVOLUTION OF THE PROBABILITY DENSITY difference approximation to the Fokker-Planck equation on a

. . . grid with spacing equal to the stepsigze This is reasonable
With parameter updates based on the sign of the gradler%nce the Ipearni%g ?ule restricts p[))ar/:\%eter changes fo

componentsH;(w,x) is limited to 0;+1 and is _piecewise However, we stress that E¢Q) describes theompletedy-
lccinsttr(]antt om..gonsqueg'ﬁl.)tl, the avgrages rtlaqtuge'd tCIJ Calgu'namics and in no way represents a diffusion approximation
ate the transition probability3) can be completed in closed ;. ihe master equation.

form. For clarity of exposition, we first derive the master Several features of the dynamics are illuminated by in-

. . . l
ehquatpn fohr a onel—dl;'nen?onalng_rametgr SFIWER and spection of Eq(1) with Eq. (5) and the ensemble behavior
then give the results for the multidimensional case. (9). First, if the ensemble is initialized such tHagw,0) has

1_'0 begin, we partition the data space into three disjoim;Support only on the gridw=+igx, i=01,..., then
regions P(w,n) will have support on this grid for ath. The dynam-
S, (w)={x|H(w,x)=+1}, ics are then easily developed by matrix multiplication. The
evolution matrix is sparse since E@9) involves only
So(w) ={x|H(w,x)=0}, nearest-neighbor interactions on the grid. Indeed, for a one-

_ _ dimensional parameter space, the evolution matrix is tridi-
S-(w)={x/H(w,x)=—1}. (6) agonal. With these simple dynamics, equilibria can be calcu-
In terms of this partition, the average in the single time-stegated by finding the null space of a matrix and first-passage

transition probability(3) becomes time calculations reduce to the solution of a Iinear system.

) Our second observation concerns absorbing states. For

W(WIW') =(S(W=W"=u))s, w)T{SW=W"))s w) some problems, e.g., supervised learing problems with
S + zero-error solutions, there exist parameter vectord |

(Sw=w'+u)s_(w) i=1,...q, such thatVE(wL!,x)=0 Vx. Then the master
=F, (W) S(W—W'— )+ Fo(W')s(W—w') equation has equilibria c:)nastlng éffunctions at thew, ,
+E_(W)S(w—w'+u), () Po(w)=>, a;o(w—wl),
=1

whereF,, Fo, andF_ are the measure of on the sets
S,, Sy, andS_, respectively. Finally, the measurés, ,
Fo, andF_ can be rewritten in terms of the first two jump
moments(normalized by the step size)

whereq is the number of distinct absorbing states. Bhare
dependent on the initial distributio”R(w,0). For learning
driven by the sign of the gradient, these solutions are only
accessible if the initial distributiof?(w,0) is restricted to

DD (w)=(H(wW,x))x=F . (W)—F_(w), points such thatv—w,; are integer multiples of, that is,
all the initial density and all of thev, must lie on a grid of
D@ (w)=(H2(W,x))x=F , (W) +F_(w). (8)  size u. If this is not the case, then at late tim@gw,n)

contains peaks that execute oscillations about these absorb-
Solving Egs.(8) for the F's in terms of the jump moments ing states.

and substituting the resulting transition probabiliti@g into A type of oscillatory behavior can also occur when an
the master equatiof®) leaves our closed form for the evo- occupied state has unoccupied nearest neighbors, for
lution of the probability density example, if the initial density is confined to single grid
point. Supposen,, hot an absorbing state, is occupied at
P(w,n+1)—P(w,n) time n and the adjacent statag + u are unoccupied, that is,

P(wg,n)# 0 but P(wy* «,n)=0. Then by Eq(9)

1
== 5[DP(W+p)P(wW+p,n) P(Wg,n+1)=P(Wg,n[1-D?(wy)].
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FIG. 1. Cost functiorE(w) (curve overlaid withP(w,n) (histogram on a grid withu=0.05. There is an absorbing statenat 0 and
a local minimum atv=1. The ensemble is initialized in the local minimutop left frame and the evolution oP(w,n) is portrayed at 50,
51, 500, 501, and 5000 iterations.

moments. Nevertheless the averages are computed in a finite
number of terms.

By assumptionw, is not an absorbing state, st/(wg,X) is
nonzero for some of the inputs Hence by Eqs(5) and(8),
0<D®@(wg)<1. WhenD@(wy)<1, some of the density
transitions to the states,+ u atn+1. In general, some of
this density will transition back towy at n+2. When
H?(wp,x) is nonzero forall of the inputs x, then tion, we choose one inputand one component; to incre-
D®(wo)=1 and all of the density leaves, at timen+1.  ment in proportion to the sign of the corresponding gradient
When this condition is met over a set of adjacent states, theomponent. We explicate the random choice of component
density switches between even- and odd-numbered gridy introducing indicator variableg € {0,1} equal to 1 with
points on successive iteratior§ee the example in Fig.)1.  probability 1N. (Only a singleé; is nonzero at each itera-

Figure 1 depicts the evolution &(w,n) overlaid on the tion.) Then
cost function for a problem with a global minimum at the
origin and a local minimum aw=1.0. The global minimum
is an absorbing state. The grid, of spacpag 0.05, contains
both the local and global minima. The ensemble is initialized The transition probability3) now contains an average
with all the density at the local minimum. The oscillatory over the indicator variables, explicitly,
behavior is evident by comparing frames-50 with n=51
andn=500 withn="501. W(w|w") =2 P((SW—W' = uH(W' X))

In most problems, absorbing states are not present. To ¢

N
=> P(§)<H 5(wi—wi’
¢ i=1

SINGLE WEIGHT UPDATE

Let we RN with componentsv; . At each learning itera-

JE(W,X)

Hj(W1X1 g) = gj Sg|'|:

obtain convergencén mean square or with probability one
one employs learning rate annealing in which the step size
w(n) is decayed according to some fixed scheddg or
using an adaptive scheme to obtain more rapid convergence

[9]. In Manhattan learning, annealing corresponds to shrink-
ing the grid size.

MULTIDIMENSIONAL CASE

For the one-dimensional algorithm, we were able to ex-
press the averages in the transition probabil®yin a finite
number of terms because the update functibfw,x) is
piecewise constant ir. This holds for the multidimensional
case as well, and stands in sharp contrast to stochastic gra-
dient descent where the averages lead to the infinite
Kramers-Moyal expansion.

For the multidimensional case, we consider two forms of
stochastic Manhattan learning. In the first form, at each it-
erationa single weightis chosen at random and only the
chosen weight is updated. In this case, like the one-
dimensional algorithm, the evolution is expressed in terms of
the first two jump moments. In the second form of the algo-

rithm, all weights are updated at each iteration. Here thewhere theF are defined in obvious analogy to those in Eq.
evolution cannot be expressed in terms of the first two jump?).

JE(W’,X)
+ péi Sgno"—Wi>

N

1

i=1

(s

N
> (H 5<wj—w,-’)>[Fi+<w')
i=1\j#i

X

w;—w{ +u sgn m
I

JE(W’ ,x)) >

Zl -

X (Wi —wi — )
+Fig(w') 8(w; —wy)

+Ei_ (W) d(wi—wi +u)],

(11)
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Substituting the transition probabilityll) into the master
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Since each component of has three possible values

equation, one obtains an expression for the evolution of th®,+ 1, there are % possible vectorg. Next defineF (w')
density in terms of th&. As in the one-dimensional case, the to be the measure of corresponding to the specific vector
latter can be written in terms of the first two jump momentsy when the system is in state’. With these definitions, the

D{Y (W) = N(&H;(W,X) )y ¢
=(H;(wW,x))x=Fj (W) —F;_(w),

D2 (W) = N(& &H Hidx = S HZ(W, X))
=[Fi (W) +Fi_(W)]8. (12

Using these expressions and the fact thHat +F;,
+F;. =1, the evolution of the density can be written as

P(w,n+1)—P(w,n)
N
=— m;l [D{P(W+ ) P(W+ g ,n)

— D (W= ) P(W—p1j,1)]
1 N
- (2)
+2N,-21[D“ (Wt ) P(W+ g2 ,N)

— 2D (W) P(w,n) + D (W p1)) P(W—pa; )],
13

where u; is an increment of lengtix alongw;. As in the

one-dimensional case, this is of the form of a finite-
difference approximation to a Fokker-Planck equation, but

transition probability is
N
Wiwlw') =2 Fyw) I otwi—w/+uy) (19
> =

and the density evolves according to

P(w,n+1)= j dw'W(w|w')P(w’,n)

:; F (w+uy)P(W+uy,n). (16

In general, the evolution in E¢16) cannot be rewritten in
terms of the first two jump moments. However, unlike the
Kramers-Moyal expansion, only a finite numberNj3of
terms are required, though the computation rapidly becomes
cumbersome for larghl. (The F can be written in terms of
the jump moments, but will involve higher-order moments.
For example, forwe R?, there are nine distincE. It is
straightforward to verify that these can be rewritten in terms
of the jump moment®{V, DV, D, DY, D, DE,
D{2>. andD{7s,.

SUMMARY

Stochastic learning algorithms are ubiquitous in the ma-

tion.

UPDATING ALL WEIGHTS

In this case, all the indicator variablésare equal to one
at every iteration. The transition probability becomes

JE(W',X) > (14

W;— W +u sgn oW,

N
W(W|W’)=<i1:[l S

It is convenient to define the quantity
JE(W’,X)

¥i=—H;(w',x)=sgn W

methods the most commonly used in practice. Previous the-
oretical treatments of the ensemble weight space dynamics
based on the master equation have relied entirely on low-
order approximations, usually diffusion equations. If the
usual gradient descent is modified so that parameter updates
are based on theign of the gradient, then the dynamics can
be developed without approximation.

For Manhattan learning, we are able to write the dynamics
of the density without approximation because the averages
appearing in the single step transition probabi(@y can be
evaluated in closed form. This is possible because the update
function H(w,Xx) is piecewise constant ox This condition
restricts the class of algorithms for which one will be able to
evaluate the ensemble dynamics without approximation.
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